Analysis of Moving Average Filter for IMU
Measurements on an 8-bit Microcontroller

Alessio Ghio, Sebastian Escalante and Jimmy Tarrillo
Universidad de Ingenieria y Tecnologia - UTEC, Lima, Peru.

Abstract—Noise is one of the biggest challenges in data
acquisition and will be always present on every measurement
made by any sensor, specially by Inertial Measurement Units
(IMUs). Due to that, there are two approaches to solve this
problem: analog or digital filtering. This second approach is
usually the most taken, since very good precision can be achieved
with mathematical operations performed by processors. However,
depending on the application, the least energy consumption, time
response or resources used are desirable. So, this paper presents
the analysis of the well known Moving Average digital filter
on an 8-bit AVR architecture microcontroller, because it is an
interesting option as a result of its limited resources and its most
likely probability of consuming less energy.

I. INTRODUCTION

Applications that require signal processing for real measure-
ments from a sensor will always encounter noise. A case of
study for this problem is the Inertial Measurement Unit (IMU).
An IMU is an electronic device, which is typically com-
pounded by various sensors, for instance, an accelerometer,
gyroscope, magnetometer, which are typically made of Micro
electromechanical systems (MEMS) technology, because it is
more attractive for embedded projects due to the capability
of being miniaturized [1]. However, as stated before, error
sources are always present as deterministic and stochastic
error. Deterministic error sources can be bias, scale factor and
misalignment. On the other hand, stochastic errors can be bias
instability and scale factor instability [2]. In order to solve this
noise problem, several techniques, algorithms and filters have
been developed.

For example, Yi. et al.[3] used a low-cost IMU, a 3-axis
accelerometer in combination with an optical wheel encoder
to track the position of skid-steered mobile robots because of
the complex dynamics interactions between the wheels and the
ground. The previous work had a two-level hierarchy control
system: in the top was the control algorithm and Kalman Filter,
both implemented in a laptop carried by the robot, and a PID
controller on the bottom. Though, it is well known that the
measurements of the accelerometers are noisy and the the
process to calculate position consists in integrating two times,
the acceleration measured by the IMU will accumulate a vast
amount of error. Several studies [4][5][6] involve attaching an
IMU to a boot in order to track the wearers movement and do
not specify where the data is processed. These studies suggest
using filtering algorithms as the Zero velocity-update, which
is a method to detect the persons stationary period and the use
of magnetometer readings to improve the positioning accuracy

978-1-5386-5491-0/18/$31.00 (©2018 IEEE

and the Extended Kalman Filter (EKF), as the optimum filter,
which could be replaced with the Unscented Kalman filter
(UKF), because, in comparison, it provides higher calculation
accuracy [7].

Another widespread use of IMU systems is on wearables.
Many applications of wearables, for instance, motion tracking,
highly rely on the battery lifespan and on the accuracy of
data measured by the IMU and processed, commonly by
a microcontroller (uC) [8]. Although the filtering methods
proposed on the works mentioned previously provide high
accuracy on the final results, they require the use of heavy
algorithms that would need 32 or 64-bit or floating point
precision.

In other words, optimal filters have a high computational
cost for an IMU and a uC. For instance, the use of lighter and
less accurate filters is an option. e.g. Redhyka et al.[9] did a
comparison of different parameters between Moving Average
filter (MA) and Sensor Fusion (Complementary and Kalman
filters) for an IMU on a uC based platform. These parameters
were: overshoot, smoothness and rise time for a simulated step
input, where the MA filter had one of the smoother response
but a significant rise time in contrast with the others.

Since these kind of applications are specially challenging
due to the need of autonomy and the low computational
resources that embedded systems have such as an 8-bit uC
in contrast with an 32-bit uC. In addition, floating point
(float) data types are usually used on a vast amount of
these applications, in which a wide interval of magnitudes is
managed. However, many new programmers are not aware of
the structure of the floating point (float) according to the IEEE
754 standard, which consists of 1 sign bit, 8 exponent bits and
23 fraction bits, for single precision and 1 sign bit, 11 exponent
bits and 52 fraction bits, for double precision. In order to
perform calculations with float data, extra hardware (floating
point unit) or libraries that would increase the execution time
and use more memory resources are needed.

For this reason, the aim of the present work is to analyze an
implementation of a MA filter on an 8-bit AVR architecture
that has no floating point unit, with different data types: 16-
bit, 32-bit, 64-bit and float type. In this way, the impact of
using specific data types can be determined. The structure of
this work is as follows: first, the methodology is introduced in
section II, then, the results are shown in section III and will be
discussed in section IV. At the end, a conclusion is presented
in section V.

Authorized licensed use limited to: Purdue University. Downloaded on December 08,2022 at 01:31:43 UTC from IEEE Xplore. Restrictions apply.



II. METHODOLOGY

The process carried out to study and analyze a linear filter
applied to raw IMU accelerometer data complete scheme is
shown in Fig 1. In this section, there will be a brief summary
about the implemented filter, secondly, it will be mentioned
the error metric proposed and how are the use of resources
determined. Finally, every block from Fig. 1 will be explained
in detail.

Hardware

Microcontroller
Data filtering
16-bit

UART @
Hexadecimal
stringof Data | FILE <:| Computer

Sequence:
Unfiltered | Filtered | Unfiltered | Filtered

Software for
Computational operations

Hexadecimal to
Decimal Conversion

Plot

Scale Factor
Multiplication

Fig. 1: Scheme of the process of data gathering, filtering and plotting.

A. Moving Average Filter

The Moving Average (MA) Filter was chosen to be imple-
mented in the uC because of its simplicity, in which noise
is reduced without compromising large amounts of data. The
characteristic equation for this filter is as follows [10]:

1 M-1
ulil = 57 D ali+J] (1)
=0

Where y[i] is the output, and x[i] is the input, M is the
number of readings that will be averaged value. Eq. 1 can also
be described as a difference equation, which is also known as
the recursive form:

yli] = yli — 1] + afi + p] — z[i — q] )
M—1

P=—"5—" 3)

g=p+1 S

This last equation is used in the process, which will be ex-
plained below, by the the uC and a software for computational
operations, in this case, MATLAB. The use of this software
is relevant due to its high accuracy, which will be used as a
reference.

It is worth to mention that the frequency response of this
filter is not optimal for signals that have valuable information
in frequency domain due to its slow roll-off and poor stopband
attenuation as it can be seen in Fig. 2 [10].

Wﬁﬁ% ,i';? = M=10
I [ / VY |———-M=20
50 \‘ “ ) \

M =30

L |
-100 i |

Gain (dB)

-250

|
|
|
-200 |
|
|
|
|
[
|
I

350 . . . . . .
0 005 01 015 02 025 03 035 04 045 05

Frequency (rad/sample)

Fig. 2: Comparison of the frequency response of the Moving Average filter
for different orders M.

¥

Initialize communication with the
sensor and variables of the filter

Initialize the output data counter (flag = 0), o
position array counter (i = 0) and the

number of points averaged (M = value)

(—\— Rest of the last value
from the current

accumulate sum

€

Read data from de sensor and store the
new value from the sensor in the array of
fixed size M

l

Sum the value in the current
accumulate

!

Average the current
accumulate sum

l

Increase data counter (flag++)
and position array counter
(i++)

!

Send via serial the filtered
data and the unfiltered data

I

Position array counter
less than M?

Position array
counter setto 0 (i =
0)

Amount of data require reached?
flag >= amount of data

Fig. 3: Flux diagram of the MA filter implemented in the uC and the
recollected data.

A graphical representation of the implementation in the uC
is shown Fig. 3, this diagram is based in [11] and it is modified
for periodical readings. Following this chart, the collected data
is processed as explained in section ILE.

B. Error metric and use resources

The standard deviation (STD) is a dispersion or spread mea-
surement about the arithmetic mean of any set of numerical
values [12]. Since the sensor is settled in a fixed position with
no movement applied to it, the ideal measurement should be a
constant zero. However, due to the erratic nature of the IMU,

Authorized licensed use limited to: Purdue University. Downloaded on December 08,2022 at 01:31:43 UTC from IEEE Xplore. Restrictions apply.



the signal will be noisy. So, applying this concept to the MA
filter theory means that the bigger the window size, the less
STD there is and the smoother the signal will be. On the other
hand, for the use of resources on this specific analysis, the
program memory usage is important. This value is calculated
by the programming tool AtmelStudio, which includes the
memory in bytes that is going to be used by the uC. Since
the filtering algorithm of the MA filter is implemented using
the recursive form it does not affect the use of resources. So,
for this specific analysis, the window size lacks importance
and as a consequence, this value was chosen arbitrarily.

C. Components, communication, software and data 1/0

The first two blocks shown in Figure 1 represent the AVR
architecture 8-bit uC and the MPU-6050 MEMS IMU used
as main components. In addition, it shows that these two
devices establish a communication by the 12C protocol. Then,
in order to export data from the uC to a computer, the RS232
module along with a RS232 to TTL cable achieve that goal
through serial communication. To visualize it, a Serial/TCP
terminal [13] displays and also, saves the data as a string of
hexadecimal characters.

D. Microcontroller raw data processing

The label Data filtering from the second block means that
the uC performs, from data that it receives from the IMU,
the MA filter on its recursive form with different types of
data for the algorithm: int16, int32, int64 and float. Complete
accelerometer measurements are 16-bit long, however, the
IMU provides this information in two separate 8-bit data
denominated as higher and lower acceleration. For further
operations, these two are concatenated, filtered and then sent.
However, all the information transferred through serial com-
munication is not filtered, the uC also exports raw unfiltered
data to a computer for later processing. On the other hand,
only 8 bits are transferred by serial communication, so in
order to export unfiltered raw data, the higher and lower
acceleration are never concatenated and for the filtered raw
data, 16-bit information is divided into two separate 8-bit data.
The transmission sequence, shown in Fig. 1, is as follows:
unfiltered, filtered, unfiltered, filtered and so on.

E. MATLAB raw data processing

As mentioned before, Serial/TCP terminal saves exported
information by the uC on a file, which is then is loaded
by MATLAB. An algorithm was developed to divide the
hexadecimal string into groups of four (16-bit information)
and subsequently, convert every group from hexadecimal to
decimal signed integers. Later on, a MA filter is applied to
the odd positioned data of the input vector, in other words,
the unfiltered data is filtered. Then, information filtered by
MATLAB and by the uC are multiplied by the accelerometer
default configuration scale factor, which is 981.0/16384.0 and
converts the raw data units from LSB/g to cm/s? [14]. Finally,
filtered data from the uC and from MATLAB are compared
by finding the euclidean distance of their subtraction and then,
their respective STDs are calculated.

III. RESULTS
A. Filter validation

In Fig. 4, the comparison of the filtered and unfiltered data
from the uC readings is shown. As it can be observed the
dotted line is smoother than the continuous line. It can be
proved using the STD from each set of data. The unfiltered
has an STD of 3.2235 and the filtered 0.4213.

Microcontroller MA filter with M = 50

Unfiltered Data
Filtered Data

Acceleration (cm/sz)

4000 6000 8000

Samples (n)

0 2000

10000

Fig. 4: Comparison of the filtered and unfiltered data from the uC with a
window size of 50.

Microcontroller MA filter with M = 50

0.5

—— MATLARB filtered Data
——~—uC Filtered Data

o
T

o
o

Acceleration (cm/sZ)
&

N
T

N
«

4000 6000 8000

Samples (n)

0 2000 10000

Fig. 5: Comparison of the filtered data from the uC and MATLAB with M =
10, only 300 of 1000 samples are shown for more visibility.

To verify the filtering performed by the uC, 11 sets of 10000
samples of filtered information by the uC and by MATLAB
are compared. In addition, it should be emphasized that for
these tests the uC used float data types. In Fig. 5, it can be
observed that the signals overlap, meaning that both signals are
identical or strongly alike. To validate this, the euclidean norm
of the signals was taken for every set and afterwards, the mean
value was calculated, resulting in the value 0.017. This implies
that difference between the filtered data by the uC and by
MATLAB is small. For this reason, the uC floating point data
type filter will be used as reference for further comparisons.

Authorized licensed use limited to: Purdue University. Downloaded on December 08,2022 at 01:31:43 UTC from IEEE Xplore. Restrictions apply.



B. Comparisons of filtering with different data types

A comparison of the number of Assembly instructions,
memory usage and Euclidean norm of intl6, int32, int64 and
float data types is presented on Table. 1. Again, the Euclidean
norm is used to determine how different the signals are. Hence,
this is considered to be the error metric with respect to the new
reference, mentioned on the previous subsection.

TABLE I: COMPARISON BETWEEN DIFFERENT DATA TYPES

Data types
intl6 int32 int64 float
Number of 122 143 190 458
Instructions
Memory usage 812 868 952 1374
(bytes) ; :
Euclidean
Norm 3.3591 3.3591 3.3591 0
(error)

IV. DISCUSSION

In Fig. 5, notice that readings are not positioned in zero
because every time the IMU is used, it has to be calibrated so
the mean of the data in a fixed position approximate to zero.
Due to that, a calibration process in a uC is not trivial and can
be done in several ways.

From Table 1 it can be observed that the number of
instructions required for each data type increases as it changes
from smaller to larger sizes. Using int32 data requires 17%;
int64, 55%; and float, 275% more instructions than intl6.
This is consistent in sight of that the use of larger variables
require more instructions to execute and that more bytes in
memory will be used. It is important to take into account that
more instructions are equivalent to more clock cycles, which
means it increases the execution time and thus, more energy
is consumed.

The Euclidean norm showed that, as expected, there is no
variation between using int16, int32 or int64 data type in terms
of precision and that there is a considerable difference between
floating point and the other data types. Therefore, depending
on the size of the values of the application and the accuracy
to be achieved, it is of great importance to consider using a
data type other than float, due to the trade offs offered. In this
case, for the MA filter, it would be necessary to choose int32
or int64 data types if the window size is considerably big. This
evaluation can be extrapolated to more complex filters where
the use of certain data types could have a high impact on the
code performance.

V. CONCLUSION

An analysis of the Moving Average filter implemented on an
8-bit uC is presented. It consists of the comparisons between
the use of different data types with respect to a reference filter
developed on a high programming language and then, the filter
performed by the uC. Even though the tendency is to use 32

or greater bit uC architecture, it is possible for an 8-bit uC to
perform said filter and obtain almost the same results as filtered
data from a software for computational operations. On the
other hand, in order to acquire such results, it is necessary to
use float data types. Without a floating point unit, the number
of instructions needed to perform operations increase by more
than double than using intl6 and in consequence, memory
usage, execution time and energy consumption also increase.
This might be a limiting factor for implementation of some
applications in embedded systems. For this reason, it should
be considered to use other data types variables, taking into
account that accuracy is trade off with reducing the use of
resources and energy consumption. Therefore, using data types
different than float, depending on the application requirements,
have a high impact on the performance of the controller.

VI. ACKNOWLEDGMENTS

We want to thank very much Professor Renan Rojas for
being always willing to help and most importantly, teach us
throughout this work.

REFERENCES

[1

—

“Introduction to Microelectromechanical Systems (MEMS) kernel
description,” https://compliantmechanisms.byu.edu/content/introduction-
microelectromechanical-systems-mems, accessed: 2018-04-30.

[2] D. Unsal and K. Demirbas, “Estimation of deterministic and stochastic

imu error parameters,” in Position Location and Navigation Symposium

(PLANS), 2012 IEEE/ION. 1IEEE, 2012, pp. 862-868.

J. Yi, J. Zhang, D. Song, and S. Jayasuriya, “Imu-based localization

and slip estimation for skid-steered mobile robots,” in Intelligent Robots

and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on.

IEEE, 2007, pp. 2845-2850.

W. T. Faulkner, R. Alwood, D. W. Taylor, and J. Bohlin, “Gps-denied

pedestrian tracking in indoor environments using an imu and magnetic

compass,” in Proceedings of the 2010 International Technical Meeting

of the Institute of Navigation. Citeseer, 2010, pp. 198-204.

[5] J. Bird and D. Arden, “Indoor navigation with foot-mounted strapdown
inertial navigation and magnetic sensors [emerging opportunities for
localization and tracking],” IEEE Wireless Communications, vol. 18,
no. 2, pp. 28-35, 2011.

[6] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison of

pedestrian dead-reckoning algorithms using a low-cost mems imu,” in

Intelligent Signal Processing, 2009. WISP 2009. IEEE International

Symposium on. 1EEE, 2009, pp. 37-42.

P. Zhang, J. Gu, E. E. Milios, and P. Huynh, “Navigation with imu/g-

ps/digital compass with unscented kalman filter,” in Mechatronics and

Automation, 2005 IEEE International Conference, vol. 3. 1EEE, 2005,

pp. 1497-1502.

[8] J. Williamson, Q. Liu, F. Lu, W. Mohrman, K. Li, R. Dick, and

L. Shang, “Data sensing and analysis: Challenges for wearables,” in

Design Automation Conference (ASP-DAC), 2015 20th Asia and South

Pacific. 1EEE, 2015, pp. 136-141.

G. G. Redhyka, D. Setiawan, and D. Soetraprawata, “Embedded sensor

fusion and moving-average filter for inertial measurement unit (imu) on

the microcontroller-based stabilized platform,” in Automation, Cognitive

Science, Optics, Micro Electro-Mechanical System, and Information

Technology (ICACOMIT), 2015 International Conference on. 1EEE,

2015, pp. 72-717.

S. W. Smith et al., “The scientist and engineer’s guide to digital signal

processing,” 1997.

LM. (2015) Arduino smoothing.

https://www.arduino.cc/en/Tutorial/Smoothing

J. M. Bland and D. G. Altman, “Statistics notes: measurement error,”

Bmj, vol. 313, no. 7059, p. 744, 1996.

“Realterm: Serial/tcp terminal (version 2.0.0.70),” 2014. [Online].

Available: https://sourceforge.net/projects/realterm/

MPU-6000 and MPU-6050 Product Specification Revision 3.4, In-

venSense Inc., 8 2013, rev. 3.4.

[3

[t}

[4

=

[7

—

[9

—

(10]

[11] [Online]. Available:
[12]
[13]

[14]

Authorized licensed use limited to: Purdue University. Downloaded on December 08,2022 at 01:31:43 UTC from IEEE Xplore. Restrictions apply.



